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Abstract--An accurate simulation of radiative heat transfer in arrays of fixed discrete surfaces is challenging 
because of the complicated geometries that can shade and block many surfaces. This paper presents an 
innovative Monte Carlo scheme using cell-to-cell photon transport developed to simulate monochromatic 
radiation impinging on an array of fixed discrete elements. Results of the study show that cell-to-cell 
photon transport is an efficient method of simulating radiation heat transfer in complicated geometries. 
Sample calculations demonstrate the dependence of radiation heat transfer in the array on the geometry 

of the array elements. Copyright © 1996 Elsevier Science Ltd. 

1. INTRODUCTION 

In a recent review article, Howell indicates that radi- 
ative heat transfer in a fixed array of surfaces, where 
the surfaces have a fixed orientation, is a significant 
problem that is not being widely addressed [1]. In 
most problems involving radiative heat transfer in 
participating media, optical properties such as extinc- 
tion coefficient and anisotropic scattering are gen- 
erally treated as being independent of incident angle. 
However, when the orientation of an absorbing array 
is fixed, the scattering phase function depends on the 
angle of incidence as well as the angle of reflection, 
increasing the complexity of the problem. The 
additional complexity arises from both the anisotropy 
of the phase function of the individual reflector 
elements and the fixed geometrical relationship 
between different reflectors. Howell observes that 
methods for treating this situation are not available. 
This article presents an approach that models the 
absorbing array as discrete surfaces and uses a Monte 
Carlo algorithm to evaluate the radiation heat transfer 
in the array. The Monte Carlo approach was opti- 
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mized for the general problem of two-dimensional 
(2D) arrays and can simulate a variety of arrays with 
different geometries, element cross-sections, and sur- 
face properties. 

Monte Carlo modeling has been widely applied to 
radiative heat transfer, and the method is well docu- 
mented [ 1-3]. In Monte Carlo simulations of radiative 
heat transfer problems, the energy emitted from a 
surface is simulated by a large number of photons. 
The photons are followed as they proceed from one 
interaction to another, with the results of each event 
being recorded. This continues until a photon either 
leaves the array or is absorbed. A sufficiently large 
number of photon trajectories must be simulated to 
ensure that variations in the results caused by random 
events are small. The results can be used to determine 
the fraction of emitted energy that has been absorbed 
on each surface and the fraction that has left the array. 

The major challenges in a Monte Carlo model 
involve calculating photon trajectories and surface 
interactions. Determination of photon trajectories is 
particularly important because this calculation typi- 
cally consumes up to 80% of the computer time used 
in a simulation [3]. Methods for modeling the inter- 
actions of a photon with a surface are described by 
several authors [2~5]. 

Most previous Monte Carlo models determine the 
location of a photon-surface interaction by finding 
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NOMENCLATURE 

L,, array width 
LH array height 
x(r) parameterized straight line 
r position vector 
s photon direction vector 
ep relative photon energy 
fi surface unit normal vector 

_- axis normal vector 
~,~ orthonormal basis vector normal to 

surface 
~ orthonormal basis vector tangent to 

surface and parallel to --axis 
~, or thonormal  basis vector tangent to 

surface and perpendicular to z-axis 
P,(-v) probability distribution function of  

photons coming out of  array as a 
function of  horizontal position. 

Greek symbols 
:~ absorptivity 
A,,~ distance of  source plane from front of 

the array 
A,~, distance of  detector plane from back 

of  the array 
0 angle from surface normal (polar 

angle) 
p~ specularity 
~)s relative specularity 
p ,  diffuse relativity 
pi~ relative diffuse reflectivity 
r parametric variable for straight line 
0 angle in surface plane (azimuthal 

angle) 
~p incident angle of  photons going into 

the array. 

the intercept of  the vector describing the path of  the 
photon and the lines describing each solid surface. 
The intercept closest to the initial location of  the pho- 
ton will be the location of the next surface--photon 
interaction [7]. The conventional scheme requires that 
all surfaces involved in the problem be checked for a 
possible intercept. When the problem includes a large 
number of  surfaces, computing the location of  a pho- 
ton surface interaction can become time-consuming. 

For  large numbers of  surfaces, it becomes con- 
venient to partition space into domains containing 
only a small number of  surfaces. A photon entering a 
domain will check only the surfaces inside the domain 
for intersections. This is the basis for the Margolies 
shading algorithm described by Maltby and Burns [3], 
as well as the cell-to-cell transport algorithm described 
here. The cell-to-cell transport scheme simplifies 
identification of  photon-surface interactions by divid- 
ing the array into rectangular regions that contain at 
most one refecting element. Only the surfaces of  the 
reflecting element within the cell need to be checked 
for possible intersections. For  large arrays in which 
most of  the photons travel only a short distance before 
encountering a surface, the cell-to-cell algorithm can 
dramatically reduce the number of  comparisons 
required to find the next intersection of  a photon with 
a surface. 

2. CELL-TO-CELL PHOTON TRANSPORT 

The cell-to-cell photon transport algorithm involves 
dividing the array into cells in which each cell contains 
a single array element. A photon is initially emitted 
into an exterior cell located on the boundary of  the 
array and interacts with the element in that cell, result- 
ing in the photon being absorbed, reflected out of  the 
array, or transmitted to an adjacent cell. The pro- 

cedure is repeated, tracking the photon as it moves 
from cell to cell until the photon is absorbed or exits 
the array. This scheme improves computat ional  effi- 
ciency by limiting the number of  surfaces that must be 
considered as possible candidates for the next pho ton-  
surface interaction. Cell-to-cell photon transport was 
originally reported by Drost [8]. 

The cell-to-cell algorithm subdivides the array into 
a set of  parallel zones, each of  which has the same 
width as the array, Lw, and then divides each zone 
into rectangular cells. Each cell has the same height 
as the zone, but the cell width is arbitrary. The only 
constraint is that the sum of all cell widths within a 
zone is equal to the zone width. A typical array of  
reflector elements is illustrated in Fig. l(a), and the 
corresponding zones and cells are shown in Fig. 1 (b). 
The array is assumed to be enclosed in a rectangular 
boundary located in the xy-plane. The faces of  the 
array through which photons enter and exit are ori- 
ented parallel to the x-axis. The zones are also oriented 
parallel to the x-axis. The y-axis points into the array. 
The face of  the array through which photons enter is 
located at y = 0, and the left-boundary of  the array is 
fixed along the line x = 0. The right-hand boundary 
is located at x = L,,. The sum of all the zone heights 
is equal to the height of  the array, LH, and photons 
exit the array by crossing the line at y = Lb. 

The boundaries of  the array at x = 0 and x = L,,. 
can be treated as either regular surfaces or as periodic 
boundaries. If  the boundaries are treated as regular 
surfaces, photons encountering them can be absorbed, 
specularly reflected, or diffusely reflected. If the 
boundaries are periodic, a photon that exists one side 
of  the array enters the array from the other side tra- 
veling in the same direction and with the same (y, z) 
coordinate. 

Cell-to-cell photon transport modeling requires two 
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Fig. 1. (a) Schematic of an array containing both rectangular and wedge-shaped elements. (b) Zone and 
cell boundaries for the array shown in (a). 
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sets of  calculations. The first set determines the move- 
ment of  a photon from one cell to another ; the second 
determines the outcome of a photon cell interaction. 
A photon trajectory is started by emitting a photon 
into a cell with a face located on the illuminated side 
of the array. The illuminated sides lie along the .v-axis. 
The photon is initially located on the cell boundary' 
with a known position and direction. When the cal- 
culation of the photon trajectory within the cell is 
completed, the photon is again located on the bound- 
ary of the cell with a known position and exit direc- 
tion. 

If the photon crosses a vertical cell boundary', then 
the direction and location of  the photon as it enters 
the adjacent cell is easily determined. If the photon 
crosses a zone boundary, it is necessary to identify 
the cell that the photon enters by comparing the .v- 
coordinate of the photon with the cell boundary 
locations in the next zone. Each time a photon exits a 
cell through one of  the vertical cell boundaries, it is 
also necessary to check for an interaction between the 
photon and an array boundary. Similarly, when a 
photon enters a new zone, the zone number is checked 
to determine if the photon has exited the array. Once 
the next cell is determined, the procedure is repeated 
until the photon is absorbed or exits the array. The 
cell-to-cell algorithm decomposes the trajectory of  the 
photon through the array into a sequence of  short 
trajectories, each taking place in a single cell. The 
trajectories are matched up at the cell boundaries so 
that the path of  the photon through the lattice cor- 
responds to the path that would be obtained using 
more conventional means. 

The cell-to-cell tracking scheme is independent of 
the reflector element geometries contained within each 
cell. Individual cell models can be changed and new 
models developed without affecting the cell-to-cell 
tracking scheme. Each cell model receives information 
on the photon's  location and incoming angle from the 
cell-to-cell tracking algorithm and returns the new. 
location and exit direction of  the photon. In essence, 
the trajectory of the photon through the array is 
broken up into a sequence of subtrajectories with each 
subtrajectory being contained entirely within a single 
cell. 

Most of  the calculations required to evaluate the 
trajectory of a photon inside a cell consist of  finding 
the intersections of  various straight lines. The photon 
trajectory, as well as the surface elements inside the 
cell and the cell boundary itselE are all straight-line 
segments. For these calculations, the most convenient 
form for describing a line is to use a parameterized 
vector equation. The straight line x(z) is given by the 
formula 

x(v) = r + r s .  (1) 

This formula is applicable to both 2D and 3D systems : 
however for 2D problems, only the projection of  equa- 
tion (1) into the xy-plane is needed. Different values 

of v correspond to different points along the line x(~). 
It is sometimes useful to think of  x(T) as the motion 
of  a particle traveling at constant velocity s. When 

= 0, the particle is located at r. The intersection of  
two arbitrary lines, x(~) and x ' (¢ ) ,  can be found using 
formulas from elementary linear algebra. The inter- 
section of  x(v) and x'(z ')  is equivalent to the condition. 

r + ~ s  = r +  ~'s' .  ( 2 )  

Equation (2) is easily solved for : and ¢ to get 

1 
"c= : -- .7[ .s ' i . (r~--r~)-.¢,(r~--r l )  ] 

1 
~' ~ , ~ [ , ~ 7 ( r ~ - , ' ~ ) - s , ( , ' , - , : ) ] .  

S ~,';~ - -  ?;x.SL 

These calculations do not require any special func- 
tions (such as square roots or trigonometric functions) 
so they are performed quickly on most computers. 

For  simulations on arrays containing reflector 
elements with circular cross-sections, it is also necess- 
ary to calculate the intersection of  a line with a circle. 
The equation for a circle of  radius a centered at c is 

I x - - c J  ~ = ,F .  

Substituting the line x(v) for x in this equation and 
solving for z gives 

r - s" ( r - c ) -  \/([s" ( r -c) ]2 - I r -c l2  +a2). 

This root corresponds to the point of closest contact. 
The calculation of  ~ can be broken up into several 
steps to avoid unnecessary calculation of  the square 
r o o t .  

When compared to other photon transport 
schemes, the conditional branching approach used in 
the cell-to-cell transport scheme will generally reduce 
numerical operations because cell geometries are 
arranged to ensure that the photon will interact with 
only one solid surface. After that interaction, the pho- 
ton exits the cell. On scalar computers, this approach 
gives very good results. The calculations reported here 
took between 3 and 10 h for 2 × lff ' separate photon 
trajectories on a SPARC I1 workstation. Because both 
the celt-to-cell transport scheme and the photon 
dynamics within the cell use highly branched con- 
ditional structures, the code was not significantly 
improved by going to a vector machine such as a Cray 
1I. However, because the individual trajectories do 
not interact with each other, Monte Carlo modeling 
is easily adapted to parallel architecture machines. 
Each processor can run independent simulations, and 
the results are collected at the end of the simulation. 

The only remaining consideration is to calculate the 
post-collision direction for photons that hit one of  the 
elements in the array (or the boundaries of the array 
i f  periodic boundary conditions are not used). This 
depends on the optical properties of the surfaces. For 
the calculations reported here, the photon can be 
absorbed with probabil ity ~ (absorptivity), specularly 
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reflected with probability Ps (specular reflectivity), or 
diffusely reflected with probability PD (diffuse reflect- 
ivity). In the most general case, these quantities are 
functions of the polar and azimuthal angles of the 
incoming photon but, in these calculations, they are 
assumed to be constant. The absorptivity, specular 
reflectivity, and diffuse reflectivity satisfy the relation, 

~+Ps+PD = 1. 

The current version of the computer code assumes 
that all surfaces within a cell have the same values of 
a, Ps and PD but different cells can have different values 
for these parameters. The array boundaries' optical 
properties can be independently specified if periodic 
boundary conditions are not imposed. 

Photon absorption is computed by initially assign- 
ing a unit "energy", ep, to each photon trajectory. 
Each time the photon collides with a surface with non- 
zero c¢, the post-collision energy, e~ is calculated 
according to 

ep = (1 - -  ~ ) e p .  

The fractional energy absorbed, 0¢ep, c a n  be assigned 
to the cell or zone for subsequent statistical analysis. 
If the photon energy falls below some preset minimum 
value, e~m, the trajectory is terminated. 

Most collisions with a reflector surface result in 
either a specular or a diffuse reflection. The relative 
probabilities for specular and diffuse reflections, p~ 
and p~, are 

p ~ -  

pb- 

P s  

PS+PD 

,OD 

Ps+PD " 

The surface properties can be specified using either :¢, 
Ps, P~ or ~, p~, p[~. 

When the photon trajectory intersects a surface, a 
random number, x~ [0, 1], is generated to determine 
whether the reflection is specular or diffuse. I fx  < p~, 
the reflectance is specular; otherwise, it is diffuse. If 
the reflection is specular, the postcollision direction, 
s', is given by the formula 

s' = s -2 ( s "  fi)fi. (3) 

where s is the precollision photon direction and fi is 
an outwardly directed normal vector to the surface at 
the point of collision. 

For diffuse reflections, the angle that the incoming 
photon makes with the surface normal is denoted by 
0, while the angle the outgoing photon makes with the 
normal is denoted by 0'. The azimuthal angle of the 
outgoing photon, 49', is the angle formed between the 
projections in the plane containing the surface of the 
incoming and outgoing photon directions. The coor- 
dinates for surface scattering are illustrated sche- 
matically in Fig. 2. The probability distributions for 
the angles 0' and 49' of the outgoing photon relative 

r......., ~ ..................... i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. ......."'" 

~1¢" 

Fig. 2. Definition of angles for diffuse reflections. 

to the surface normal and some axis in the tangent 
plane of the surface are, respectively. 

P(O') d0' ~ cos 0' d cos 0' 

P(49') ~ d49'. 

For random numbers x , y ~  [0, 1], O' and ~b' are given 
by 

0' = c o s - '  (~/x) 

49' = 2~y. 

Because the arrays are uniform in the ~ direction, an 
orthonormal basis, ~,, ~z, ~,l, can be constructed at the 
collision point using the relations 

eN = fix ~. (4) 

The outgoing photon direction is then 

s' = cos 49' sin 0'~z + sin 49' sin 0'4, + cos 0'~n. (5) 

Using equations (4), the vector ~,, ~z and ell can be 
written in the global ( x , y , z )  coordinates used to 
describe the array. The vector s' can then be calculated 
in the global coordinates using equation (5). 

The array pictured in Fig. 1 (a) also includes the 
photon source and detection plane. Photons originate 
in a plane parallel to the xz-plane and set a distance 
Asr c from the front of the array. Depending on the 
type of illumination, photons can be distributed in the 
source plane in a variety of ways. The calculations 
reported here use a collimated beam as the photon 
source. The beam is assumed to have a Gaussian pro- 
file normal to the beam axis. All photons have the 
same initial direction, s, but the spatial distribution of 
photons in the source plane is a Gaussian centered at 
a value of x = x0, z = 0. If the beam is oriented an 
angle ¢p from the y axis, the Gaussian is broadened by 
a factor of 1/cos ¢p in the x-direction. Photons are 
detected when they cross a plane parallel to the xz  
plane and set a distance Aaet behind the array. 

The Monte Carlo algorithm described above was 
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the basis for the M C L I T E t  computer  code. The MCL-  
ITE code was validated by comparing the results of  
M C L I T E  with an earlier cell-to-cell transport code, 
V O R R U M t .  The results were identical within stat- 
istical uncertainties for a range of  array geometries 
and surface properties. V O R R U M  validation is 
described by Drost e t  al.  [8, 9]. The current version of  
MCLITE supports modeling of  reflector elements 
with triangular, cylindrical and rectangular cross-sec- 
tions. 

3. RESULTS 

To illustrate the capabilities of  the M C L I T E  com- 
puter code~ simulations on three large arrays were 
performed. The arrays were chosen to study whether 
or not the global properties of  the array eventually 
become independent of  the detailed structure of the 
array for large arrays. The arrays were composed of 
reflector elements with cylindrical and triangular 
cross-sections. The triangular and cylindrical reflector 
elements both presented the same cross-section at nor- 
mal incidence, and the geometrical arrangement of  
the elements was the same for all three arrays. 

The reflector elements in each array were centered 
at the vertices of  a triangular lattice. The first array 
was composed of  only triangular reflector elements : 
the second array was composed of only cylindrical 
reflector elements ; and the third array was a random 
50 : 50 mixture of  cylindrical and triangular elements. 
The triangular array elements were isosceles triangles 
with a base of  width of  1 unit and a height of  1 
unit. The triangles were oriented so that the base was 
parallel to the x-axis and the apex was pointed in 
the negative ),-direction. The cylinders were 1 unit in 
diameter. Each array was composed of  30 rows and 
each row contained 59 reflector elements. Each row 
was 1 unit in height, and the center-to-center distance 
between array elements in each row was 2 units. The 
array elements in successive rows were offset from 
each other by 1 unit, and each row was separated from 
the next by a gap of  0.732 units. A small section of  
the mixed array, along with the dimensions, is shown 
in Fig. 3. The overall dimensions of  the arrays were 
118 units in the x-direction and 51.229 units in the y- 
direction. Periodic boundary conditions were imposed 
on all arrays. 

The array elements in all three arrays were given 
nonabsorbing surfaces. For  one set of  calculations, 
the surfaces were perfect specular scatterers; for the 
other, the surfaces were perfect diffuse scatterers. The 
arrays were illuminated by a collimated beam with a 
Gaussian profile in the plane normal to the beam 
axis. The half-width at half maximum of the Gaussian 
profile was 5.89 units. All the photons in the incident 
beam were traveling in the same direction with no 
spreading. The incident beam was parallel to the xy- 

t Developed by researchers at Pacific Northwest Labora- 
tory, Richland, WA. 

2 

--~-1 
I 0.732 

Fig. 3. Representative portion of mixed array with dimen- 
sions in arbitrary units. 

plane and was deflected from the y-axis by an angle 
~0. The center of  the beam was located 30 units along 
the x-axis. The source and detection planes were both 
set 0.001 units from the front and back of  the array, 
respectively. Because periodic boundary conditions 
were used, the incident beam was replicated in each 
periodic unit of  the array. 

Two sets of  surface properties were used. For  one 
set of  calculations, all the reflector elements were given 
completely specular surfaces (Ps = 1.0) while, for the 
second set, the reflector elements were given com- 
pletely diffuse surfaces (Ps = 0.0). The emissivity was 
zero in all cases so that there was no absorption by 
the array itself. 

Two angles of  incidence were investigated, ~0 = 0 ~ 
and q~ = 29 '~. The choice of  ~p = 29 '~ corresponds to a 
beam that is pointed almost directly down the chan- 
nels in the array, located at + 3W from the y axis. The 
transmittance (T) and reflectivity (R) of  the arrays 
for both specular and diffuse surface are listed in Table 
1. 

Not surprisingly, the specular arrays show more 
varied behavior than the diffuse arrays. For  normal 
incidence, the reflectance of  the specular arrays satu- 
rates, in the sense that all three arrays are highly 
reflective. The transmittance, however, is still sensitive 
to the details of  the array elements and varies by more 
than a factor of  two between the three different arrays. 
For ~0 = 29", all three arrays show significant differ- 
ences in behavior. The transmittance goes up in all 
cases but not consistently. The triangular array, which 
had the lowest transmittance at normal incidence, still 
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Table 1. Transmittance and reflectance for incident angles of 
~o = 0 ° and ¢ = 29 ° for arrays with specular (Ps = 1.0) and 

diffuse (Ps = 0.0) surfaces 

Array Ps t# T R 

Triangular 1.0 0 ° 0.021 0.979 
Cylindrical 1.0 0 ° 0.044 0.956 
Mixed 1.0 0 ° 0.054 0.946 
Triangular 1.0 29 ° 0.057 0.943 
Cylindrical 1.0 29 ° 0.204 0.796 
Mixed 1.0 29 ° 0.140 0.860 
Triangular 0.0 0 ° 0.032 0.968 
Cylindrical 0.0 0 ° 0.024 0.976 
Mixed 0.0 0 ° 0.028 0.972 
Triangular 0.0 29 ° 0.198 0.802 
Cylindrical 0.0 29 ° 0.166 0,834 
Mixed 0.0 29 ° 0.125 0,875 

has  the lowest t r ansmi t tance  at  tp = 29 °. The  relative 
t ransmi t tance  of  the cylindrical and  mixed arrays is 
now the reverse of  the normal  incidence case, with 
the cylindrical ar ray having  the higher  t ransmit tance .  
Fur the rmore ,  the t ransmi t tance  of  the cylindrical and  
mixed array is fairly high, while the t ransmi t tance  of  
the t r iangular  a r ray  remains  low. 

More  str iking differences between the three specular 
arrays can  be seen by examining the spatial  dis- 
t r ibu t ion  of  pho tons  leaving the back of  the array. 
The  d is t r ibut ion  of  pho t ons  is given by Px(x),  which 
is the probabi l i ty  of  f inding a p h o t o n  at  the back  of  the 
array (y = Lh) at  posi t ion x. The d is t r ibut ion  Px(x) is 
normal ized  so tha t  the integral  

LoW Px(x ')  dx '  

equals the to ta l  t ransmit tance .  The funct ion Px(x) 
can be in terpre ted  as the relative intensity seen by a 
detector  wi th  a 2n solid acceptance angle centered at  
x. The funct ion Px(X) is computed  by dividing the 
interval  [0, Lw] into 59 bins,  one for each array element  
in the last row, and  b inning  the outgoing  pho tons  as 
a funct ion of  x. The dis t r ibut ion of  the p h o t o n  beam 
at the backplane  of  the array in the absence of  any 
array elements is shown in Fig. 4 for b o t h  q~ = 0 ° and  
~o = 29 °. 
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Fig. 4. Profiles Px(x) for unobstructed beam. Solid line is for 
tp = 0 ° ; dotted line is for ~0 = 29 °. 
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The Px(x) for the three specular arrays are shown 
in Fig. 5(a) for the case ¢p = 0 °. The Px(x) for the 
cylindrical and  mixed arrays are quali tat ively similar, 
a l though  the mixed array shows more  sharp  var ia t ions  
in intensity. The  m a x i m u m  uncer ta in ty  in Px(x) is no t  
more  than  2.5 x 10 -5 for any  of  the curves presented 
here, so the var ia t ions  in the mixed-array  curve are 
real and  no t  the result  of  noise in the statistics. These 
var ia t ions  are characteris t ic  of  all the P,,(x) for the 
mixed array. 

The Px(x) for the t r iangular  array is completely 
different f rom the curves ob ta ined  for the cylindrical 
and  mixed arrays. Ins tead of  showing the b road  dis- 
t r ibu t ion  with a m a x i m u m  centered at  x = 30, the 
d is t r ibut ion  has  two peaks  at  approximate ly  x = 20 
and  x = 40, wi th  a m i n i m u m  at  x = 30. There  is also 
an  addi t ional  side peak near  x = 90. 

The  b roaden ing  of  the incident  beam for the cyl- 
indrical  and  mixed lattices can  be rat ional ized by a 
diffusion model  for the p h o t o n  mot ion .  F o r  the tri- 
angular  lattice, the idea tha t  pho tons  are diffusing 
obviously breaks  down.  Because of  the small  n u m b e r  
o f  possible surface or ientat ions,  it might  be argued 
tha t  the pho tons  sample a relatively small  n u m b e r  of  
dist inct  pa ths  t h rough  the lattice. The width  of  the 
individual  peaks is comparab le  to the width  of  the 



2818 B.J. PALMER et al. 

incident beam. suppor t ing  the not ion that  there are 
only a few paths th rough the lattice. However,  the 
possibility that  only a few paths are being taken 
through the lattice is surprising, because the sides of 
the triangles are oriented at 26.5651 "~: from the vertical, 
This angle is not  a ra t ional  fraction o fn .  After  several 
collisions, the array should randomize  pho ton  direc- 
tions, a l though possibly not as quickly as for the cyl- 
indrical and  mixed lattice. 

The dis t r ibut ions P~(.\') for ~p = 29 are shown in 
Fig. 5(b). The cylindrical and mixed arrays again show 
a broad peak. For  the cylindrical array, the peak is 
centered at about  .v = 50, while for the mixed array, 
the peak appears  shifted slightly to x = 40,45.  The 
unobst ructed  beam, however, is centered at x = 60. 
The beam orientat ion does affect the posit ion of 
max imum intensity at the back of  the array, but col- 
lisions with the reflector elements result in a smaller 
shift than that  for the unobs t ruc ted  beam. The inten- 
sity max imum for the cylindrical array is higher than 
for the mixed array, which correlates well with the 
behavior  of the total  t ransmit tance.  As in the normal  
incidence case, the behavior  of  P,(x)  for the t r iangular  
array is completely different from that  for the cyl- 
indrical and mixed arrays. The distr ibut ion has three 
distinct peaks, with the largest centered near x = 30. 
The discrete peaks, and the lack of  broadening again 
suggest that  the pho tons  are taking only a few discrete 
paths th rough  the array. 

The fact tha t  the peaks for the cylindrical and mixed 
lattice are shifted from .v = 30 but are not  centered at 
the unobs t ruc ted  beam maximum can be explained 
also by a diffusion picture of pho ton  motion.  For  an 
incident angle of  29 , a significant fraction of  pho tons  
is able to travel deep into the array before hit t ing one 
of  the reflector elements. After  the first collision, the 
mot ion  of  the pho tons  is diffusive. The center of  the 
peak in P~(x) should therefore correspond to the 
center of  the dis t r ibut ion of  first collisions. 

For  diffuse reflector surfaces, it would be expected 
that  the reflectance and  t ransmit tance  would show less 
variabili ty between the different arrays than for the 
specular surfaces. These expectat ions are partially 
borne  out  by the results in Table  I. For  normal  inci- 
dence, all three arrays are again highly reflective. The 
t ransmit tances,  a l though small, are relatively close to 
each other  compared  to results for the specular case. 
Interestingly, the t ransmi t tance  for the t r iangular  
array is now the highest for the three arrays instead 
of  the lowest. For  ~p = 29':, the t ransmit tance  increases 
significantly for the three arrays. The t r iangular  
reflector elements again give the highest trans- 
mittance,  but  the spread in t ransmit tance  values is 
smaller than  for the specular case. 

The behavior  of  the dis t r ibut ions P~(x) parallels the 
t ransmit tance  for the diffuse arrays. The p~(x) for 
q~ = 0 *' are shown in Fig. 6(a) for the three arrays. 
The three curves show a broad max imum centered at 
x = 30, with the relative intensities ordered in the 
same way as the total  t ransmit tances.  The P, (x)  for 
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Fig. 6. (a) Profiles P,(x) lot diffuse arrays with ~o = 0 .  Mixed 
array ( ). Triangular array ( • - • ). Cylindricalarray 
( . . . .  ). (b) Profiles P,(x) for diffuse arrays with ~o = 29.  
Mixed array (- q.  Triangular array ( . -  • ). Cyl- 

indrical array ( . . . .  ). 

~p = 29 are shown in Fig. 6(b). The three curves show 
a broad max imum near x ~ 50. Again,  the ordering 
of  the relative intensities in P~(x) matches the ordering 
of  the total  t ransmi t tance  for each of  the arrays. Both 
the broadening  of  the intensity max imum and the 
shifting of  the peak for the q) = 29 ~ case are consistent  
with the diffusion picture of  pho ton  mot ion  in these 
arrays. 

4. C O N C L U S I O N S  

The cell-to-cell t ranspor t  a lgor i thm can efficiently 
model radiative heat t ransfer  in arrays composed of  
fixed discrete surfaces. The method  allows rapid com- 
puta t ion  of  pho ton  paths th rough  the array and is 
flexible enough to permit  examinat ion  of  a wide var- 
iety of  geometrical  arrangements .  Fur thermore ,  the 
a lgor i thm can be extended to handle  o ther  element 
cross-section shapes in addi t ion to the t r iangular  and 
cylindrical elements described in this study. The algo- 
r i thm can also be extended to 3D geometries. The cell- 
to-cell a lgor i thm is applicable to any problem requir- 
ing calculat ion of  pho ton  pa ths ;  it can also be used 
to model radiat ive exchange and  the calculat ion of 
view factors [10]. 

The calculat ions performed in this paper  provide 
a good indicat ion of  the efficiency of  the cell-to-cell 
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t r anspor t  algori thm. The mixed array conta ins  
approximate ly  2500 surfaces for the t r iangular -ar ray  
elements and  ano the r  800 or so surfaces for the cyl- 
indrical  elements,  which are a r ranged  in a non-  
symmetric  pat tern .  Using  the cell-to-cell t r anspor t  
a lgori thm, 2 x 106 trajectories could be run  in 3-10 h 
on  a s tandard  worksta t ion.  (The ~0 = 0 ° calculat ions 
were near  the 3-h end of  this range ;  the ~0 = 29 ° cal- 
culat ions were closer to 10 h.) 

The calculat ions in this paper  also indicate tha t  the 
global optical propert ies  o f  regular  arrays retain a 
sensitive dependence on  the detailed s tructure of  the 
array, even in the large array limit. Fo r  the cylindrical 
array, where the m o t i o n  of  pho tons  should  be highly 
randomized  after the first one or two collisions, there 
are still quant i ta t ive  differences between the arrays 
with specular and  diffused reflector elements. The tri- 
angular  array behaves  differently, bo th  quant i ta t ively  
and  qualitatively,  f rom the cylindrical and  mixed 
arrays for the specular case and  shows large quan-  
t i tative differences in the diffuse case. Fur the rmore ,  
there does not  appear  to be any consis tent  pa t t e rn  of  
behavior  for the array t ransmi t tance  and  reflectance 
as a funct ion of  incident  angle or surface properties.  
Based on  the results presented here, it would be diffi- 
cult to predict  a priori which array would have the 
highest reflectance and  t ransmi t tance  for a given set 
of  surface properties.  
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